

451

ANALYSIS AND RESEARCH OF SYSTEM SECURITY BASED ON

ANDROID

ANAMEJE JOSEPHAT AZUKA

Chinweanameje16@gmail.com

Computer Science Department, Federal Polytechnic Oko.

ABSTRACT

Android may be a smart mobile terminal operating platform core on Linux. But thanks to its

open-source software and programmable framework character, that leads the Android system

susceptible to get virus attacks. This paper has deeply researched from the Linux system

security mechanism, Android-specific security mechanisms and other protection mechanisms.

And on this basis, Android devices have achieved closely guarded on normal state. So that

attackers cannot use the kernel module or core library to get highest access permission and be

attacked. Meanwhile, to further strengthen the security of Android devices, it enables them to

properly handle the high-risk threat. The market for smart phones has been booming in the past

few years. There are now over 400,000 applications on the Android market. Over 10 billion

Android applications have been downloaded from the Android market. Due to the Android

popularity, there are now a large number of malicious vendors targeting the platform. Many honest

end users are being successfully hacked on a regular basis. In this work, a cloud based reputation

security model has been proposed as a solution which greatly mitigates the malicious attacks

targeting the Android market. Our solution stores the reputation of Android applications in an anti-

malware providers’ cloud (AM Cloud). The experimental results witness that the proposed model

could well identify the reputation index of a given application and hence its potential of being risky

or not.

Keywords: Smart phones; Android OS; Reputation based security; Inter Process Communication;

Security system.

INTRODUCTION

Access control lists (ACLs) and permission-based security models allow administrators and

operating systems to restrict actions on specific resources. In practice, designing and configuring

ACLs (particularly those with a large number of configuration parameters) is a complicated task.

More specifically, reaching a balance between the detailed expressiveness of permissions and the

usability of the system is not trivial, especially when a system will be used by novices and experts

alike.

Android is a newcomer to the smart phone industry and in just a few years of existence has

managed to obtain significant media attention, market share, and developer base. Android uses

ACLs extensively to mediate inter-process communication (IPC) and to control access to special

functionality on the device (e.g., GPS receiver, text messages, vibrator, etc.). Android developers

must request permission to use these special features in a standard format which is parsed at install

time. The OS is then responsible for allowing or denying use of specific resources at run time. The

mailto:Chinweanameje16@gmail.com

452

permission model used in Android has many advantages and can be effective in preventing

malware while also informing users what applications are capable of doing once installed.

STATEMENT OF PROBLEM

 One of the main problems with ACLs and permission models in general is that they are typically

not designed by the users who will ultimately use the system, but rather by developers or

administrators who may not always for see all possible use cases. While some argue that the

problem with these permission based systems is that they are not designed with usability in mind,

we believe that in addition to the usability concerns, there is not a clear nderstanding of how these

systems are used in practice, leading security experts to blindly attempt to make them better

without knowing where to start. While there are many widely deployed systems which use

permissions, we focus on the empirical analysis of the permission model included in Android OS.

 The main objectives of our empirical analysis are:

(1) to investigate how the permission-based system in Android is used in practice (e.g.,

whether the design expectations meet the real-world usage characteristics and

(2) to identify the strengths and limitations of the current implementation.

We believe such analysis can reveal interesting usage patterns, particularly when the

permission-based system is being used by a wide spectrum of users with varying degrees of

expertise.

LITERATURE REVIEW

According to T. Bläsing, et al 2010, Android is a software stack for mobile devices that has an

OS, middleware and key applications. Android SDK issued to develop android applications . It

uses Java programming language. It is planned to run on differing types of devices (C.

Orthacker, et.al 2011). Android platform is based on Linux technology. It is composed of OS,

interface and application components. It’s issuance breaks the monopoly status of Microsoft

windows mobile OS and Nokia’s Symbian OS. It allows anyone to develop him own applications.

So there's an opportunity that a user is probably going to download and install malicious

software's written by software hackers.

ANDROID PLATFORM ARCHITECTURE

Android has built in tools. (A. Shabtai, et al 2010). Android platform composed of Linux kernel,

system libraries, android runtime, and application framework the non five parts. Android relies

on Linux2.6 version. According to M. Ongtang 2009, It provides core system services security,

memory management, process management, network group, driven model. The core part is

similar to an abstract level between the hardware layer and other software within the systems.

ANDROID RUNTIME

Android runtime consist soft work components. First,a set of core libraries. Second, the Virtual

machine Dalvik. Java programs are received and translated by the VMDalvik. Applications

will been capsulated in Dalvik. AVM is available for every and each program vent though

some programs are running in parallel.

APPLICATION FRAME WORK

453

An application frame work is a software framework that's used to implement a typical structure

of an application for a selected OS. Any application can publish it’s own features. These functions

can be used by any other application. (E. Chin, et al, 2003).

Now like most of the main software and operating platforms on the world Android also comes

with a software development kit which is termed commonly as Android SDK. Android SDK

provides you the AP Ilibraries and tools for building and developing new applications on

Android operating environment using the java programming language. According to M.

Ongtang, et al 2009, this procedure of developing the applications on Android platform in java

programming language using the tools and AP Ilibraries provided by Android SDK is named

as Android Application Framework.

BASIC FEATURES SUPPORTED ANDROID APPLICATION FRAMEWORK

454

In the above mentioned list we did not

mention some of the hardware dependant

features as the set end to largely vary the

device, though nevertheless android

application framework support them.

Some of the device dependant features

supported by android include GSM

telephony ,network connection profiles

(W. Shin, et al, 2009) such as Bluetooth,

Edge, 3G, WiFi, utility features such as

camera, compass, GPS, etc.

APPLICATIONS

Applications are written in Java

programming language. The Android SDK

tools compile the code into an android

package, an archive file with apk suffix.

The android software platform comes with

a set of basic applications. These

applications can run simultaneously.

Android initially came into existence with

the sure fire concept that developments

are given the ability and freedom to make

enthralling Mobile applications while

taking advantage of everything that the

mobile hand set has to offer.

This particular software or Mobile

Application is formed to be open source,

thereby giving the chance to the

developers to introduce and incorporate

any technological advancement.

OPEN HAND SET

ALLIANCE

Open Hand set Alliance is an

amalgamation of Tech Companies with

common and particular interest within the

mobile user enhancement experience.

Companies like Google, HTC, Motorola,

Samsung, TelecomItalia, TMobile, LG,

Texas Instruments also as Sony

Ericsson, Vodafone, Toshiba and Hawaii

are Tech giant supported their core

abilities and strengths, while keeping and

pursuing the characters and goals of every

company, their basic Idea of this joining

of hands waste feature-rich mobile

experience for the end user. This alliance

meant the sharing of ideas and innovation,

to bring out the seideasin to reality. This

provided the millions and millions of

Mobile users the experience that they never

had.

Like the Apple iphone, Android

OS allows third party developers to

innovate and build Applications and

software for mobile devices. Android

is an open, flexible and stable enough

to associate itself with new errand

newer evolving Technologies.

Android’s vastrange of easy to use

tools and wide selection of libraries

provides Mobile Application

developers with the means of a

tremendous mobile operating

software to come up with the

foremost efficient and rich Mobile

Applications changing the world of

many mobile users.

SERVICES

A service is a component that runs

within the background to perform

long-running operations. For

example, a service might play music

in the back ground while the user

is during a different application,

with an activity.

ANDROID SECURITY

a) Android's Five Key Security Features:

1. Security at the OS level through the

Linux kernel

2. Mandatory applications and box

3. Secure inter process communication

4. Application signing

5. Application- defined and user- granted

permissions

b) Android System Security

In the default settings, no application

has permission to perform any

operations that might adversely

impact other applications, the OS,

and data security.

c) Android Security: System- Level

Security Features

454

The Linux kernel provides Android

with a group of security measures. It

grants the OS a user-based

permissions model, process

isolation, a secure mechanism for

IPC, and the ability to get rid of any

unnecessary or potentially insecure

parts of the kernel. It further works to

stop multiple system users from

accessing each other’s resources and

exhausting them.

Access control systems have existed for a

long time. In its basic form, a security

system based on access control lists allows

a subject to perform an action (e.g., read,

write, run) on an object (e.g., a file) only if

the subject has been assigned the necessary

permissions. Permissions are usually

defined ahead of time by an administrator

or the object‘s owner. Basic file system

permissions on POSIX-compliant systems

are the traditional example of ACL-based

security since objects – in this case, files

can be read, written or executed either by

the owner of the file, users in the same

group as the owner, and/or everyone else.

More sophisticated ACL-based systems

allow the specification of a complex policy

to control more parameters of how an object

can be accessed. We use the term

permission-based security to refer to a

subset of ACL-based systems in which the

action doesn‘t International Journal of IT,

Engineering and Applied Sciences

Research (IJIEASR) ISSN: 2319-4413

Volume 2, No. 2, February 2013 i-Xplore

International Research Journal Consortium

www.irjcjournals.org 50 change (i.e., there

is only one possible action to allow or deny

on an object). This would be similar to

having multiple ACLs per object, where

each ACL only restricts access to one

action. We note that reducing the allowable

actions to one does not necessarily make the

system easier to understand or configure.

For example, in the Android permission

model, developers implement finer level

granularity by defining separate

permissions for read and write actions.

ANDROID APPLICATION

SECURITY FEATURES

This user based protection allows

Android to make an “Application

Sandbox.” Each Android app is

assigned a unique user ID, and

every runs as a separate process.

Therefore, each application is

enforced at the method level through

the Linux kernel, which doesn't allow

applications to interact with each

other, and provides the monthly

limited access to the Android

operating system. This gives the user

permission-based access control, and

he/she is presented with an inventory

of the activities the Android

application will perform and what

it'll require to try to to them, before

the app is even downloaded. The

same goes for file system

permissions-each application

(oruser) has its own files, and unless

a developer explicitly exposes files to

a different Android application, files

created by one application can't be

read or altered by another.

 Android Application Security Scans

Keep the following in mind when

performing security tests:

•Inbound SMS listeners (command and

control)

•Unsafe file creation

•Improper data base storage

•Unsafe use of shared preferences

•Storage of sensitive data on mass storage

device

•Content provider SQL injection

•APN or proxy modification

a) Android Security: Geared

Towards User-Friendly

Security

454

All of Android’s more technical

security measures are designed to be

simply presented to the user, meaning

that they will be easily controlled

through the interface. Straight

forward methods of improving your

Android device’s security can

include: using a password or pin,

setting your phone to lock after a

period of inactivity, only enabling

wireless connections that you use, and

only installing Android apps you trust

and have personally vetted.

Google also only allows tested and

proven secure Android applications

into its market place, meaning that the

user has less of an opportunity of

putting in a malicious app.

Furthermore, the Android security

system prompts the user to permit the

installation of an application, meaning

that it's impossible to remotely install

and run an application.

b) Android system security protection

Android system safety inherited the

planning of Linux within the design

ideology. In practice, each Android

application runs in its own process. In

the OS, each application runs with a

singular system identity. Most of

these curity functions are provided by

the permission mechanism.

Permission are often restricted to

particular specific process operations.

Android is privilege separated. Data

security mainly relies on software

signature mechanism. It uses Android

Manifest. Xml file. When specified

software services recalled, the

system first checks this file. To make

use of protected features of the

device, one must include in Android

Manifest. xml, one or more tags

declaring the permissions.

ANDROID ANTI THEFT SECURITY

The ultimate security for Android

device just in case it's ever lost or

stolen. Advantages of this feature are

accurate tracking, encoding, Spy

camera activation and Device

lockdown. It also validates

permissions for send SMS

messages, hardware controls, take

pictures and videos, your location,

fine (GPS) location, receive SMS,

read SMS or MMS, edit SMS or

MMS, full internet access, read

contact data and write contact data.

ANDROID ANTI THEFT SECURITY

The ultimate security for Android

device just in case it's ever lost or

stolen. Advantages of this feature are

accurate tracking, encoding, Spy

camera activation and Device

lockdown. It also validates

permissions for send SMS

messages, hardware controls, take

pictures and videos, your location,

fine (GPS) location, receive SMS,

read SMS or MMS, edit SMS or

MMS, full internet access, read

contact data and write contact data.

Permission-Based Security Examples

An example of a permission-based security

model is Google‘s Android OS for mobile

devices. Android requires that developers

declare in a manifest a list of permissions

which the user must accept prior to

installing an application. Android uses this

permission model to restrict access to

advanced or dangerous functionality on the

device. The user decides whether or not to

allow an application to be installed based on

the list of permissions included by the

developer. Similar to Android OS, the

Google Chrome web browser uses a

permission-based architecture in its

extension system. Extension developers

create a manifest where specific

functionality (e.g., reading bookmarks,

opening tabs, contacting specific domains)

required by the extension can be requested.

The manifest is read at extension install

time to better inform the user of what the

454

extension is capable of doing, and reduce

the privileges that extensions are given. In

contrast, Firefox extensions, which do not

have this permission architecture, run all

extension code with the same OS-level

privileges as the browser itself. A third

example of a currently deployed

permissionbased architecture is the

Blackberry platform from Research in

Motion (RIM). Blackberry applications

written in Java must be cryptographically

signed in order to gain access to advanced

functionality (known as Blackberry APIs

with controlled access) such as reading

phone logs, making phone calls or

modifying system settings.

RELATED WORK

 The design and implementation of a

framework to detect potentially malicious

applications based on permissions

requested by Android applications. The

framework reads the declared permissions

of an application at install time and

compares it against a set of rules deemed to

represent dangerous behavior. For example,

an application that requests access to

reading phone state, record audio from the

microphone, and access to the Internet

could send recorded phone conversations to

a remote location. The framework enables

applications that don‘t declare (known)

dangerous permission combinations to be

installed automatically, and defers the

authorization to install applications that do

to the user.

 Ontang et al. present a fine-grained access

control policy infrastructure for protecting

applications. Their proposal extends the

current Android permission model by

allowing permission statements to express

more detail. For example, rather than

simply allowing an application to send IPC

messages to another based on permission

labels, context can be added to specify

requirements for configurations or software

versions. The authors highlight that there

are real-world use cases for a more complex

policy language, particularly because

untrusted third-party applications

frequently interact on Android. On the topic

of analysis of permission-based

architectures.

PROPOSED SOLUTION

As part of a solution to the above identified

pitfalls in the android security model, we

propose a reputation based security trust

model to evaluate and validate the

applications prior to installation. We have

also analyzed the consequences of a

malicious application that has managed to

get installed with the full consent of the end

user. The Internet is full of genuine and

malicious applications. An Android mobile

owner can download different applications

with varying reputation ratings. In this

model, it is proposed that after downloading

and before installing, the mobile device

asks the AM Cloud for the reputation of the

downloaded application.

Based on the downloaded

applications‘behavior and reputation index

the downloaded application can be

classified in any of the following three

ways.

454

 The application has built a good

reputation and there is likely no

harm installing it on the client‘s

device. Good reputation will be set

after some threshold of positive

feedback from those clients that

have downloaded and automatically

reported.

 The application has not yet

developed any good or bad

reputation in the AM Cloud. In

general, if an application has not

developed a good reputation, we

should be extremely cautious with

such an unknown application. In

this scenario, the anti-malware

provider may wish to recommend

that the user does not install the

application or that the user installs

the application in a sandbox.

 The application has a bad

reputation. In this case, the user is

warned about the application‘s bad

reputation.

EXPERIMENTS

Concerning just the applications which

have not yet developed a strong reputation,

we need to analyse those applications. To

analyse the behaviour of an Android

application, it is easier to start with

analysing the set of permissions that the

application has set in the Android

application package file which includes all

of the application‘s code, resources, assets,

and manifest file. To do this, we have

experimented with a reputation based

security model for Android applications. A

second experiment was also done to analyse

how a malicious application could track a

mobile owners‘ location and report it to a

third party. The results were achieved using

two experiments.

 Experiment-1

On solution which has been used by anti-

malware vendors is to perform analysis of

the application, on the Android platform.

However the Android is low on resources,

such as performance, battery life and main

memory. So it makes more sense to perform

the analysis in the AM Cloud. To overcome

these issues, another solution which has

been used by anti-malware providers is to

upload the entire application for analysis

(for each user). For our solution, we will

minimize the uploading of applications to

the AM Cloud. I.e., we do not want two

users, with the same exact application, to

both upload the same application. Our

approach to minimize the uploading of

applications now follows.

 In this second experiment, we have

developed two applications namely

Location Tracker, The Location Tracker

application has

ACCESS_FINE_LOCATION,

ACCESS_MOCK_ LOCATION, and

ACCESS_COARSE_LOCATION

permissions in the user permission manifest

file of the application. The manifest file

declares which permissions the application

must have in order to access protected parts

of the API and interact with other

applications. It also declares the

permissions that others are required to have

in order to interact with the application's

components. The Location Tracker

application implements a location listener

class that returns the latitude and longitude

of the present location by consulting the

Location Manager, which provides access

to the system location services. We can use

the latitude and longitude to locate the

associated geographic place such as the

street address, hotel, and zip codes.

POSSIBLE ENHANCEMENTS TO

ANDROID

454

The Android permission model does not

currently make use of the implied hierarchy

in its namespace. For example,

a.p.SEND_SMS and a.p.WRITE_SMS are

two independent permission labels, instead

of being grouped, for instance, under

a.p.SMS. Android includes an optional

logical permission grouping [9] that is used

for displaying permissions with more

understandable names (e.g., one of the

groupings reads ―Services that cost you

money‖ in- stead of a.p.CALL_PHONE).

This grouping, however, does not allow

developers to hierarchically define

permissions, which could potentially

extend current Android-defined

permissions to express more detailed

functionality. In the case of Android

particularly, a permission hierarchy would

allow for an extensible naming convention

and helpdevelopers more accurately select

(only the) needed features. One example

would be a free application that displays ads

from domains belonging to Admob.

Currently a developer would include the ad

code snippet, and request the

a.p.INTERNET permission. This

permission allows the application to

communicate over any network and retrieve

any data from any server in the world. A

more fine grained hierarchical permission

scheme could enable the developer to

request the a.p.INTERNET.

ADVERTISING (.admob.com) permission

which could limit network connectivity to

only download ads in static HTML from

sub domains of Admob. A hierarchical

permission scheme could help users

understand why an application is requesting

specific permissions, but more importantly,

could help developer‘s better use the

principle of least privilege. This

modification is not backwards compatible

with the currently deployed Android OS,

therefore it might be better suited for an

entirely new model instead.

Applicability to Other Permission-

Based Systems

The methodology presented in this work

has allowed us to understand how

developers use the permission-based

security model in Android. We believe that

our methodology is applicable to explore

usage trends in other permission based-

based systems. A base requirement for the

methodology to work is being able to

display applications and associated

permissions for this representation to be

possible, the set of permissions requested

by an application must be accessible. In the

case of Android, the set is statically

readable in a manifest, but other systems

might have different implementations.

Google‘s Chrome OS extension system [4,

10] uses an Android-like manifest and

permissions to access advanced

functionality, which makes this system a

prime candidate for applying our

methodology. An empirical study of a large

set of thirdparty extensions using our SOM-

based methodology could help identify

what correlations, if any, are present in

requesting permissions to open tabs, read

bookmarks, etc. This may also be of use in

addressing other security concerns raised in

recent work.

CONCLUSION

We have introduced a methodology to the

security community for the empirical

analysis of permissionbased security

models. In particular, we analysed the

Android permission model to investigate

how it is used in practice and to determine

its strengths and weaknesses. The Self-

Organizing Map (SOM) algorithm is

employed, which allows for a 2-

dimensional visualization of highly

dimensional data. SOM also supports

component planes analysis which can

reveal interesting usage patterns. We have

analysed the use of Android permissions in

454

a real-world dataset of 1,100 applications,

focusing on the top 50 application from 22

categories in the Android market. The

results show that a small subset of the

permissions is used very frequently where

large subsets of permissions were used by

very few applications. We suggest that the

frequently used permissions, specifically

a.p.INTERNET, do not provide sufficient

expressiveness and hence may benefit from

being divided into sub-categories, perhaps

in a hierarchical manner. Conversely,

infrequent permissions such as the self-

defined and the complementary

permissions (e.g., install/ uninstall) could

be collapsed into a general category.

Providing finer granularity for frequent

permissions and combining the infrequent

permissions can enhance the

expressiveness of the permission model

without increasing the complexity (i.e.,

maintaining a constant over all permission

count) as a result of the additional

permissions. We hope that our SOM-based

methodology, including visualization, is of

use to others exploring independent

permission-based models.

REFERENCES

 A. Shabtai, Y. Fledel, U. Kanonov, Y.

Elovici, S. Dolev, and C. Glezer.

2010. Google Android: A

Comprehensive Security

Assessment. In IEEE Security &

Privacy, Volume 8, Issue 2.

T. Bläsing, L. Batyuk, A.-D. Schmidt, S.A.

Camtepe and S. Albayrak. 2010. An

Android Application Sandbox

system for suspicious software

detection. In Proceedings of 5th

International Conference on

Malicious and Unwanted Software

(MALWARE 2010), Nancy,

France.

M. Ongtang, S. McLaughlin, W. Enck, and

P. McDaniel. 2009. Semantically

Rich Application-Centric Security

in Android. In Proceedings of the

Annual Computer Security

Applications Conference (ACSAC

'09).

W. Shin, S. Kiyomoto, K. Fukushima, and

T. Tanaka. 2009. Towards Formal

Analysis of the Permission-Based

Security Model for Android. In

Proceedings of Fifth International

Conference on Wireless and Mobile

Communications (ICWMC '09),

Cannes/La Boca.

P. Teufl, C. Orthacker, S. Kraxberger, G.

Lackner, M. Gissing, A. Marsalek,

J. Leibetseder and O. Prevenhueber.

2011. Android Market Analysis

with Activation Patterns, In

Proceedings of 3rd International

ICST Conference on Security and

Privacy in Mobile Information and

Communication Systems

(MOBISEC 2011).

C. Orthacker, P. Teufl, S. Kraxberger, G.

Lackner, M. Gissing, A. Marsalek,

J. Leibetseder, and O.

Prevenhueber.2011. Android

Security Permissions.

J. Burns. Developing Secure Mobile

Applications for Android 2012. An

Introduction to Making Secure

Android Applications.

E. Chin, A. Porter Feltm, K. Greenwood,

and D. Wagner.2003. Analysing the

Inter-application Communication in

Android, University of California,

Berkeley, Berkeley, CA, USA.

